GRB 970228, a highly luminous flash of gamma rays, strikes the Earth for 80 seconds, providing early evidence that gamma-ray bursts occur well beyond the Milky Way.

In gamma-ray astronomy, gamma-ray bursts (GRBs) are immensely energetic explosions that have been observed in distant galaxies. They are the most energetic and luminous electromagnetic events since the Big Bang. Bursts can last from ten milliseconds to several hours. After an initial flash of gamma rays, a longer-lived "afterglow" is usually emitted at longer wavelengths (X-ray, ultraviolet, optical, infrared, microwave and radio).The intense radiation of most observed GRBs is thought to be released during a supernova or superluminous supernova as a high-mass star implodes to form a neutron star or a black hole.

A subclass of GRBs (the "short" bursts) appear to originate from the merger of binary neutron stars. The cause of the precursor burst observed in some of these short events may be the development of a resonance between the crust and core of such stars as a result of the massive tidal forces experienced in the seconds leading up to their collision, causing the entire crust of the star to shatter.The sources of most GRBs are billions of light years away from Earth, implying that the explosions are both extremely energetic (a typical burst releases as much energy in a few seconds as the Sun will in its entire 10-billion-year lifetime) and extremely rare (a few per galaxy per million years). All observed GRBs have originated from outside the Milky Way galaxy, although a related class of phenomena, soft gamma repeater flares, are associated with magnetars within the Milky Way. It has been hypothesized that a gamma-ray burst in the Milky Way, pointing directly towards the Earth, could cause a mass extinction event.GRBs were first detected in 1967 by the Vela satellites, which had been designed to detect covert nuclear weapons tests; after thorough analysis, this was published in 1973. Following their discovery, hundreds of theoretical models were proposed to explain these bursts, such as collisions between comets and neutron stars. Little information was available to verify these models until the 1997 detection of the first X-ray and optical afterglows and direct measurement of their redshifts using optical spectroscopy, and thus their distances and energy outputs. These discoveries, and subsequent studies of the galaxies and supernovae associated with the bursts, clarified the distance and luminosity of GRBs, definitively placing them in distant galaxies.

GRB 970228 was the first gamma-ray burst (GRB) for which an afterglow was observed. It was detected on 28 February 1997 at 02:58 UTC. Since 1993, physicists had predicted GRBs to be followed by a lower-energy afterglow (in wavelengths such as radio waves, x-rays, and even visible light), but until this event, GRBs had only been observed in highly luminous bursts of high-energy gamma rays (the most energetic form of electromagnetic radiation); this resulted in large positional uncertainties which left their nature very unclear.

The burst had multiple peaks in its light curve and lasted approximately 80 seconds. Peculiarities in the light curve of GRB 970228 suggested that a supernova may have occurred as well. The position of the burst coincided with a galaxy about 8.1 billion light-years away (a redshift of z = 0.695), providing early evidence that GRBs occur well beyond the Milky Way; this was proven decisively two months later with a subsequent burst GRB 970508.