A hydrogen atmosphere is discovered on the extrasolar planet Osiris by the Hubble Space Telescope, the first atmosphere detected on an extrasolar planet.
HD 209458 b, also nicknamed Osiris after the Egyptian god, is an exoplanet that orbits the solar analog HD 209458 in the constellation Pegasus, some 159 light-years (49 parsecs) from the Solar System. The radius of the planet's orbit is 0.047 AU (7.0 million km; 4.4 million mi), or one-eighth the radius of Mercury's orbit (0.39 AU (36 million mi; 58 million km)). This small radius results in a year that is 3.5 Earth-days long and an estimated surface temperature of about 1,000 C (2,000 F; 1,000 K). Its mass is 220 times that of Earth (0.69 Jupiter masses) and its volume is some 2.5 times greater than that of Jupiter. The high mass and volume of HD 209458 b indicate that it is a gas giant.
HD 209458 b represents a number of milestones in extraplanetary research. It was the first of many categories:
a transiting extrasolar planet
The first planet detected through more than one method
an extrasolar planet is known to have an atmosphere
an extrasolar planet observed to have an evaporating hydrogen atmosphere
an extrasolar planet found to have an atmosphere containing the elements oxygen and carbon
one of the first two extrasolar planets to be directly observed spectroscopically
The first extrasolar gas giant to have its superstorm measured
the first planet to have its orbital speed measured, determining its mass directly.Based on the application of newer theoretical models, as of April 2007, it is thought to be the first extrasolar planet found to have water vapor in its atmosphere.In July 2014, NASA announced finding very dry atmospheres on HD 209458 b and two other exoplanets (HD 189733 b and WASP-12b) orbiting Sun-like stars.
Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula H2. It is colorless, odorless, tasteless, non-toxic, and highly combustible. Hydrogen is the most abundant chemical substance in the universe, constituting roughly 75% of all normal matter. Stars such as the Sun are mainly composed of hydrogen in the plasma state. Most of the hydrogen on Earth exists in molecular forms such as water and organic compounds. For the most common isotope of hydrogen (symbol 1H) each atom has one proton, one electron, and no neutrons.
In the early universe, the formation of protons, the nuclei of hydrogen, occurred during the first second after the Big Bang. The emergence of neutral hydrogen atoms throughout the universe occurred about 370,000 years later during the recombination epoch, when the plasma had cooled enough for electrons to remain bound to protons.Hydrogen is nonmetallic, except at extremely high pressures, and readily forms a single covalent bond with most nonmetallic elements, forming compounds such as water and nearly all organic compounds. Hydrogen plays a particularly important role in acid–base reactions because these reactions usually involve the exchange of protons between soluble molecules. In ionic compounds, hydrogen can take the form of a negative charge (i.e., anion) where it is known as a hydride, or as a positively charged (i.e., cation) species denoted by the symbol H+. The H+ cation is simply a proton (symbol p) but its behavior in aqueous solutions and in ionic compounds involves screening of its electric charge by nearby polar molecules or anions. Because hydrogen is the only neutral atom for which the Schrödinger equation can be solved analytically, the study of its energetics and chemical bonding has played a key role in the development of quantum mechanics.
Hydrogen gas was first artificially produced in the early 16th century by the reaction of acids on metals. In 1766–1781, Henry Cavendish was the first to recognize that hydrogen gas was a discrete substance, and that it produces water when burned, the property for which it was later named: in Greek, hydrogen means "water-former".
Industrial production is mainly from steam reforming of natural gas, oil reforming, or coal gasification. A small percentage is also produced using more energy-intensive methods such as the electrolysis of water. Most hydrogen is used near the site of its production, the two largest uses being fossil fuel processing (e.g., hydrocracking) and ammonia production, mostly for the fertilizer market. Hydrogen is problematic in metallurgy because it can embrittle many metals, complicating the design of pipelines and storage tanks.